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Abstract—In this work, we study the capabilities and limita-
tions of forward model learning agents and their applications
to motion-control tasks. Forward model learning agents learn
to approximate the environment dynamics to apply planning
algorithms for action-selection. While previous work has shown
that forward model learning agents can efficiently learn to play
simple video games, we extend their applicability to domains with
continuous state and action spaces. Our experiments show that
such agents are quickly able to learn an approximate model of
their environment, which suffices to solve several simple motion-
control tasks. Comparisons with deep reinforcement learning
further highlight the sample efficiency of forward model learning
agents.
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I. INTRODUCTION

Previous works have shown that several motion control tasks
with known environment dynamics can effectively be solved
by planning agents [1]. However, those cannot be applied in
case the dynamics are unknown. In contrast, reinforcement
learning agents have been able to learn even complex behavior
through continuous interactions with such environments [2].
While model-free reinforcement learning agents solely focus
on the expected return of an action, model-based reinforcement
learning models also approximate the environment’s dynamics.
Benchmarks have shown that model-based reinforcement
learning often results in a higher sampling efficiency during the
agent’s training [2]. Similarly, forward model learning agents
construct a model of their environment by observation. In
contrast to model-based reinforcement learning, forward model
learning agents determine the value of an action at run-time.
For this purpose, the approximate model of the environment
is used for simulating the result of its actions, and therefore,
allows the application of planning algorithms.

A benchmark on the game Sokoban has shown that state-of-
the-art model-based reinforcement learning agents need to ob-
serve about 108 time-steps until the first levels can be solved [3].
Similar experiments on forward model learning agents have
shown a rapid increase in performance after observing a few
thousand game-steps [4]. While this comparison highlights the
possible sampling efficiency of forward model learning agents,
the presented experiments were limited to categorical state and
action spaces [4]–[6]. Building upon these results, we introduce

forward model learning agents that can handle continuous state
and action spaces using simple models of their environment.

The key contributions of this paper are:

• Forward model learning for continuous control tasks:
We propose the use of various regression models for
predicting state transitions in real-valued state spaces and
discuss which action-selection methods seem suitable for
continuous action spaces.

• Comparing the sample efficiency: Using motion control
tasks of varying complexity we compare the proposed for-
ward model learning agent to several deep reinforcement
learning agents in terms of sampling efficiency and the
agents’ performance.

The remainder of this paper is structured as follows. In
Section 2 we review recent works on forward model learning
and introduce the required notation for the model’s design
process. Section 3 introduces a decomposed differential forward
model able to model continuous state spaces. Furthermore, we
review and compare planning algorithms for continuous action
spaces. In Section 4 we compare the final model to several
deep reinforcement learning algorithms followed by a short
discussion in Section 5. The paper concludes in Section 6.

II. FORWARD MODEL LEARNING AND COMPARABLE
APPROACHES

Forward model learning agents consist of two components,
one for learning a model of the environment and a second one
for action-selection. The learning component’s goal is to create
an approximation of the environment model. In reinforcement
learning, the environment model is considered to be a stochastic
process that maps the sequence of previous actions a ∈ A and
states s ∈ S to a probability of observing the next state and
reward r ∈ R.

p(st, rt | st−1, at−1, . . . , s1, a1)

We consider each state st ∈ S ⊆ Rn to be a vector of real-
valued observations st = (s1t , s

2
i , . . . , s

n
t ), s

i
t ∈ R at time t.

The same notation applies to available actions and the action
space: at ∈ A ⊆ Rn.

For simplification, we consider the environment model to
be a Markov decision process of m-th order, whereas m is the
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length of the state-action sequence, that the agent considers in
its model:

p(st, rt | st−1, at−1, . . . , st−m, at−m)

We further split the environment model into a state transition
model and a reward model:

State Transition Model: p(st | st−1, at−1, . . . , st−m, at−m)

Reward Model: q(rt | st−1, at−1, . . . , st−m, at−m)

To fit such a model the agent needs to frequently interact with
its environment while storing a data set of made observations.
Given such a data set a supervised learning method can be
used to predict upcoming states. Depending on the structure of
the state-space a classifier (discrete and nominal state-spaces)
or a regressor (real-valued state spaces) can be used to predict
upcoming states.

In recent works of model-based reinforcement learning, the
state transition model has been represented in the form of deep
neural networks. The World Models agent learns a latent vector
representation using LSTMs [7]. This allows the agent to keep
track of previous events and further condense its action policy.
Following up on this idea, the imagination-based I2A agent [3]
adds a rollout phase for improving the agent’s estimates of
an action’s expected return for long-time horizons. Combining
these two ideas, the Dreamer agent [8] has shown that latent
state models can learn motion control behaviors of varying
complexity based on high-dimensional sensory inputs.

In contrast to model-based reinforcement learning, forward
model learning agents do not model the return of an action
(accumulated reward) but estimate an action’s value based
on its simulated outcome. State-of-the-art planners such as
Monte Carlo Tree Search [9] and Rolling Horizon Algorithms
[10] have recently shown applications in game AI [10], [11]
and motion control [12]. Since the accuracy of the planning
process is dependent on the accuracy of the agent’s prediction,
the agent’s goal is to improve the forward model’s accuracy
and not the agent’s policy. The latter is determined at run-time
as a result of the planning process.

III. FORWARD MODEL REPRESENTATION

Learning a model of the environment has been actively
studied in model-based reinforcement learning. While many
approaches rely on the generality of deep neural networks, they
have also shown to not be very sample efficient. Therefore, the
model requires many iterations do be trained until a reliable
prediction of the upcoming state can be made. Finding a suitable
state representation can drastically reduce the required training
time as well as improve the model’s final prediction accuracy.

For this reason, the focus of our previous work has been
to find suitable state representations and model types for
improving the efficiency of the model. For graph-like structures
this has resulted in the development of the local forward model,
which assume a measurable distance of observable sensors.
Exploiting a sensor value’s independence of sensor values

outside its neighborhood yields a considerable reduction in the
model’s complexity.

Such dependencies among observable sensor variables may
also exist in motion-control tasks, but the underlying structure
may be unknown. Therefore, we propose to relax our assump-
tion of independence. In case of a decomposed forward model
we assume that the next state’s sensor values are dependent
on the previous state (and possibly its predecessors), but
independent of each other. This results in a decomposability of
the state transition model into several sub-models, whereas each
sub-model predicts the updated sensor value or respectively its
changes until the next time step:

i-th Component Model: p(sit | st−1, at−1, . . . , s1, a1)

i-th Differential Model: p(sit−1 − sit | st−1, at−1, . . . , s1, a1)

Aggregating the predictions of all sensor values and the
reward, the agent can predict the outcome of an action.
Similarly, a hierarchical structure can be built, in which the
environment is first split into several units and the future state
values of each unit are predicted independently [6], [13]. Since
the result is another state observation, the agent can predict
whole action sequences by repeatably applying the learned
forward model. Using this, actions can be determined using
forward planning methods or a policy can be learned using
reinforcement learning on the simulated environment [14].

For motion control, the underlying modeling task is con-
sidered a supervised learning problem in which a regressor is
trained to predict upcoming states. Several attributes of the
model need to be considered upon model selection:

• model accuracy: the trained model needs to be accurate
for previous observations and future time steps. This is
especially relevant for consecutive predictions, since the
error will propagate over multiple predictions.

• model speed: the trained model needs to be applied very
often during the search process. Studies on MCTS have
shown that increasing the number or the quality of rollouts
can improve the agent’s performance [15].

• model size: the model’s size (in terms of parameter count)
can impact the training time and the number of obser-
vations required for optimizing the model’s parameters.
While regression models such as linear regression are the
most simple to train, their applicability is quite limited. In
contrast, deep neural networks have shown to be flexible,
but can require large amounts of training data.

• model interpretability and reliability: a characteristic
that is often neglected in deep learning approaches is
the model’s interpretability. While deep reinforcement
learning has shown great performance, the black-box
nature of deep neural networks may not allow human
interpretation of its results. This complicates to measure
the reliability or risk of a trained model. In contrast,
planning based approaches can transparently summarize
the search path and its predicted states. This can be
especially important in risk critical applications and allow
the computation of confidence bounds.
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TABLE I
CHARACTERISTICS OF STUDIED MOTION CONTROL TASKS.

OpenAI Gym State Space Action Space RewardsEnvironment Dim Type

Cartpole-v1 R4 1 discrete discrete
Acrobot-v1 R6 1 discrete cont.
LunarLander-v2 R8 1 discrete cont.
Pendulum-v0 R3 1 cont. cont.
Swimmer-v2 R6 2 cont. cont.

IV. EXPERIMENTS ON MOTION-CONTROL TASKS

A. Creating a Decomposed Differential Forward Model Agent

We apply the decomposed differential forward model to
several motion control tasks. In consideration of the model’s
requirements, we chose to use decision tree regression to learn
a model of the environment dynamics during interaction with
it. This regression method has shown to adapt well to a large
number of environments while keeping the computation time
low and allowing for high parallelization during the prediction
phase. An apparent drawback is that the training process cannot
be continued after new observations have been registered.
We compensate for this by waiting for 100 time-steps until
the training process is repeated, which in turn, increases the
response time to unforeseen results. We apply the Rolling
Horizon Evolutionary Algorithm [10], [16] for action-selection.
Its main benefits are its constant computation time (given a
fixed computational budget) and its parallelizability of rollouts.

We evaluate the proposed approach using five well-known
motion control tasks, which are made available through the
OpenAI Gym framework [17]. The proposed decomposed
differential forward model (DDFM) will be compared to
several popular reinforcement learning algorithms. In case
of a discrete action space we chose to use Sarsa [18],
DQN [19], and CEM [20]. Whereas for environments with
continuous action spaces, we compared our approach with the
NAF algorithm [21]. The hyperparameters of each algorithm
were tuned by a simple grid-search. The source code of our
experiments can be accessed at https://github.com/ADockhorn/
Forward-Model-Learning-for-Motion-Control-Tasks.

B. Environments

In the following, we shortly review the environments used
in our evaluation. They were selected to represent various
amounts of in- and outputs to the agent as well as continuous
and discrete action spaces. A comparison of all environments
based on these attributes is provided in Table I. Additionally,
each environment is illustrated in Figure 1.

The cart-pole problem [22] requires the agent to balance a
pole by moving a cart back and forth (see Figure 1a). The pole
is attached to a cart by an un-actuated joint, which moves along
a frictionless track. The agent can apply a discrete force of
+1 or −1 to the cart. The pole is starting in an upright position
and needs to be kept in the range of [−15,+15] degree from
vertical. If the pole is falling below that threshold or the cart

TABLE II
AGENT PERFORMANCE AFTER 100.000 TRAINING STEPS MEASURES AS THE

AGENTS’ AVERAGE PERFORMANCE OF THE LAST 10 TRAINING TRIALS.

CartPole Acrobot Lunar Lander Pendulum Swimmer

DFM 376.32 -272.53 -76.93 -297.84 30.40
Sarsa 269.49 -983.63 76.66 — —
DQN 325.30 -131.08 37.39 — —
CFM 47.14 -665.60 -237.58 — —
NAF — — — -587.93.55 0.34

moves more than 2.4 units from the center, the episode ends.
A maximal reward is achieved after balancing the pole for a
maximum of 500 time-steps.

The pendulum problem is a classic problem in the control
literature. In this version of the problem, the pendulum starts
in a random position, and the goal is to swing it up so it stays
upright. The reward penalizes deviations from the equilibrium
and the magnitude of the agent’s applied actions.

The acrobot problem requires the agent to swing up a
pendulum with two links. Similar to the pendulum problem,
the agent can apply a discrete rotational force to the joint of
the first link. Initially, both links hang downwards, and the
goal is to swing the end of the lower link up to a given height
indicated by the target line. The reward is the height of the tip
of the pendulum.

A more complex environment is represented in the Lunar
Lander environment in which the agent’s task is to land a drone
at a landing pad. At each time-step, the agent can fire one of
three engines to adjust the drone’s position and speed. A reward
is gained for successfully landing the drone. Crashing into the
surface with too much speed, spending fuel, and landing outside
the landing pad decreases the agent’s reward.

The Swimmer environment lets the agent take control of a
worm-like robot in a viscous fluid. Its goal is to swim forward
by controlling its joints while using minimal control inputs.

C. Training and Evaluation Setup

For each environment, we continuously train our agents for
a total of 100000 time-steps. During training, we record the
agents’ reward per episode. We repeat the training process
10 times to get more stable results. The final performance
of each model is measured by the average return of the last
10 training episodes.

D. Results

Figure 2 shows the agents’ performance in each of the
five training environments. The results indicate that simple
problems, such as the Cart Pole and the Pendulum environment,
can efficiently be solved after just a few training steps. In these,
the agent outperforms deep-reinforcement learning approaches
in terms of sampling efficiency. Nevertheless, the proposed
model performs worse environments that require long planning
horizons such as Lunar Lander and Acrobot. Due to the
simplicity of many environments, the learning curve is very
steep and converges quickly. The convergence level seems to
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(a) Cart Pole (b) Pendulum (c) Acrobot (d) Lunar Lander (e) Swimmer

Fig. 1. Six motion-control environments and their representation in the OpenAI Gym framework.
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(a) Cart Pole
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(b) Acrobot

0 20000 40000 60000 80000 100000
training steps

250

200

150

100

50

0

50

av
er

ag
e 

ep
is

od
e 

re
tu

rn

DDFM DQN SARSA CEM

(c) Lunar Lander
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(d) Pendulum

0 20000 40000 60000 80000 100000
training steps

0

10

20

30

av
er

ag
e 

ep
is

od
e 

re
tu

rn

DDFM NAF

(e) Swimmer

Fig. 2. Training comparison of forward model learning and deep reinforcement learning agents. Graphs are showing the average episode return per training
steps smoothed using the local regression (loess). Each agent has been trained 10 times for 100000 steps each.

be very much dependent on the applied planning algorithm,
e.g. degrading the Cart Pole environment to an episode return
of 200 in case of shorter planning horizons.

V. DISCUSSION

Overall, the decomposed differential forward model has
shown great learning performance in simple environments. In
the following, we want to highlight some problems of the
proposed approach and how they may be overcome in the
future:

a) Planning horizon dilemma: A common problem of
planning algorithms is the choice of the planning horizon. While
increasing the search can improve the accuracy of a planning
agent’s reward estimation, it also exponentially increases the
number of possible states to be analyzed. In the case of forward
model learning agents, the planning horizon is further restricted
by the accuracy of the learned forward model. In contrast to
using the true environment dynamics, predictions of a learned
forward model become less accurate with increasing search

depth. For choosing a suitable rollout length for a trained
model we analyzed the model’s prediction error over the
length of multiple predicted action sequences. This can hint a
suitable parameter combination but has shown to be too costly
to repeat throughout the model learning process. Dynamic
measurements of the model’s confidence in its prediction
might help in improving the agent’s performance. Similarly,
algorithms like MCTS that do not use a fixed planning horizon
may be beneficial.

b) Exploration vs. Exploitation: During training the agent
needs to optimize the learned model as good as possible but also
needs to focus on beneficial actions. Therefore, the agent needs
to focus on actions that maximize our chances of succeeding,
while adding new data to the forward model for improving its
accuracy. In the present study, we let the agent solely decide
based on its predicted reward. However, it may show beneficial
to include exploring actions during training. This may not just
improve the model’s accuracy, but on the long run, also make
the agent more robust to unlikely or new situations.
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VI. CONCLUSION AND FUTURE WORK

In this paper, we proposed the decomposed differential
forward model learning agent. The agent consists of a forward
model learning component, for which the decision tree regressor
was used, and a planning component, for which we used a
rolling horizon evolutionary search. We evaluated the approach
based on five motion-control tasks, of which the simple
scenarios could be solved faster than with deep-reinforcement
learning approaches. The decomposed nature of the prediction
allows for efficient parallelization. Similarly, the evaluation of
multiple rollouts can be parallelized without much additional
effort. Both assure a high number of samples to be tested
before deciding for an action. However, the prediction, as well
as the search component of the agent, are prone to problems
regarding the environment. In case the learned forward model
is not able to fit the environment with high accuracy, the result
of predicted rollouts can be misleading and cause inefficient
actions to be selected more frequently. Overall, the approach
has not shown to scale well with higher dimensional state- and
action-spaces which may be overcome by more sophisticated
model learning and planning components.

Even if reinforcement-learning has shown to be able to
solve many motion-control tasks, these methods still require
large amounts of training data. Since the proposed planning
based approaches have shown great learning performance
during the first steps of acting in a new environment, the
next step will be to combine these two algorithmic schemes in
a single agent. Such an agent may dynamically choose to either
trust the reinforcement learner’s value model or to rely on a
learned forward model for using a planning-based approach.
Similarly, the planner could benefit from the reinforcement-
learner’s policy during the search phase. Since curiosity-driven
learning and other intrinsic reward schemes have already shown
promising results for improving reinforcement-learning agents,
similar improvements could be achieved when being applied
to forward model learning agents.
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